Computing Medians and Means in Hadamard Spaces
نویسنده
چکیده
The geometric median as well as the Fréchet mean of points in a Hadamard space are important in both theory and applications. Surprisingly, no algorithms for their computation are hitherto known. To address this issue, we use a splitting version of the proximal point algorithm for minimizing a sum of convex functions and prove that this algorithm produces a sequence converging to a minimizer of the objective function, which extends a recent result of D. Bertsekas (2011) into Hadamard spaces. The method is quite robust and not only does it yield algorithms for the median and the mean, but it also applies to various other optimization problems. We moreover show that another algorithm for computing the Fréchet mean can be derived from the law of large numbers due to K.-T. Sturm (2002). In applications, computing medians and means is probably most needed in tree space, which is an instance of a Hadamard space, invented by Billera, Holmes, and Vogtmann (2001) as a tool for averaging phylogenetic trees. Since there now exists a polynomial-time algorithm for computing geodesics in tree space due to M. Owen and S. Provan (2011), we obtain efficient algorithms for computing medians and means of trees, which can be directly used in practice.
منابع مشابه
On subdifferential in Hadamard spaces
In this paper, we deal with the subdierential concept onHadamard spaces. Flat Hadamard spaces are characterized, and nec-essary and sucient conditions are presented to prove that the subdif-ferential set in Hadamard spaces is nonempty. Proximal subdierentialin Hadamard spaces is addressed and some basic properties are high-lighted. Finally, a density theorem for subdierential set is established.
متن کاملBest proximity point theorems in Hadamard spaces using relatively asymptotic center
In this article we survey the existence of best proximity points for a class of non-self mappings which satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [A. Abkar, M. Gabeleh, Best proximity points of non-self mappings, Top, 21, (2013), 287-295] which guarantees the existence of best proximity points for nonex...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملMedians and means in Riemannian geometry: existence, uniqueness and computation
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. Firstly, the existence and uniqueness results of local medians are given. In order to compute medians in practical cases, we propose a subgradient algorithm and prove its convergence. After that, Fréchet medians are considered. We prove their statistical consistency and giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 24 شماره
صفحات -
تاریخ انتشار 2014